
J. Fluid Mech. (2002), vol. 463, pp. 25–52. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008698 Printed in the United Kingdom

25

On sound generation by the interaction between
turbulence and a cascade of airfoils with

non-uniform mean flow

By I. E V E R S AND N. P E A K E
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK

(Received 4 September 2000 and in revised form 23 January 2002)

The sound generated by the interaction between a turbulent rotor wake and a stator
is modelled by considering the gust response of a cascade of blades in non-uniform,
subsonic mean flow. Previous work by Hanson & Horan (1998) that considers a
cascade of flat plates at zero incidence is extended to take into account blade geometry
and angle of attack. Our approach is based on the work of Peake & Kerschen (1997),
who calculate the forward radiation due to the interaction between a single vortical
gust and a cascade of flat plates at non-zero angle of attack. The extensions completed
in this present paper are two-fold: first we include the effects of small but non-zero
camber and thickness; and second we produce uniformly valid approximations which
predict the upstream radiation near modal cut-off. The thin-airfoil singularity in the
steady flow at each leading edge is crucial in our model of the sound generation.
A new analytical expression for the coefficient of this singularity is derived via a
sequence of conformal mappings, and it turns out that in our asymptotic limit this
is the only quantity which needs to be calculated from the steady flow in order
to predict time-averaged noise levels. Once the response to a single gust has been
completed, we use Hanson & Horan (1998)’s approach to determine the response
to an incident turbulent spectrum, and find that as well as the noise corresponding
to the auto-correlation of the gust velocity component normal to the blade, there is
also a contribution from the cross-correlation of the normal and tangential velocities.
Predictions are made of the effects of blade geometry on the upstream acoustic power
level. The blade geometry can have a very significant effect on the noise generated
by interaction with a single gust, with changes of up to 10 dB from the flat-plate
noise levels. However, once these gust results have been integrated over a full incident
turbulence spectrum the effects of the geometry are rather smaller, although still
potentially significant, leading to changes of up to about 2 dB from the flat-plate
results. The implication of all this is that the blade geometry can have a significant
effect on the tonal noise components generated by rotor–stator interaction (i.e. by
single harmonic gusts), but that the broadband part of the noise spectrum is relatively
unaffected.

1. Introduction
The interaction between the (turbulent) rotor wake and downstream stator blades

is a primary source of both tonal and broadband noise in large aeroengines – see
figure 1. Of most practical interest are situations involving high (subsonic) flow Mach
numbers and large reduced frequencies, and in these cases the sound generation is
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Figure 1. Rotor–stator interaction.

particularly sensitive to the effects of the stator-blade thickness, camber and angle of
attack and the corresponding mean-flow non-uniformities. Our aim here is therefore
to predict the upstream noise produced by the interaction between a spectrum of
convected vorticity waves and a cascade of airfoils, taking full and systematic account
of the effects of the blade geometry.

The analysis to be described here extends previous work in several ways. A
number of previous analyses have considered single convected gusts interacting with
cascades of flat plates aligned with the uniform oncoming flow, using the Wiener–
Hopf technique (e.g. Mani & Horvay 1970 and Koch 1971, while Peake 1992 derived
simplifications of the Wiener–Hopf factorization in the high-frequency limit). Hanson
& Horan (1998) consider specifically the broadband noise caused by the interaction
between a full spectrum of turbulence and a flat-plate cascade, using the numerical
approach of Smith (1972) to determine the response to each gust component.

For numerical solutions of the full unsteady Euler equations we refer to the review
by Verdon (1993). More analytically based investigations often involve the use of
Goldstein’s (1978) extension of the classical rapid distortion theory (Batchelor &
Proudman 1954), and this is the approach which will be adopted here. The unsteady
disturbances are taken to be small and the inviscid-flow equations are linearized about
a compressible, irrotational mean flow, resulting in an inhomogeneous convected wave
equation with variable coefficients in the wave operator. The source term and the
coefficients depend on the mean flow and account for acoustic volume sources and
for the influence of mean-flow gradients on the acoustic propagation. Numerical
solution of this equation has been undertaken by Atassi and coworkers (see for
instance Atassi, Subramaniam & Scott 1990). Alternatively, an asymptotic analysis
in the limit of large reduced frequency, k, has been completed by Myers & Kerschen
(1995) to model the gust–blade interaction for a single flat plate at a small angle
of attack to oncoming subsonic flow, while Tsai & Kerschen (1990) and Myers &
Kerschen (1997) performed similar studies to determine the additional effects of small
thickness and camber. These asymptotic calculations turn out to be equivalent to
singular perturbation analysis in which sound generation takes place in an inner
region around the airfoil leading edge, with geometric-acoustics propagation in the
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outer region. This demonstrates that at high frequency the noise generation may
effectively be described by acoustic point sources at the leading edge, and that any
other sources, specifically those at the trailing edge, along the airfoil surface and
along the wake, are asymptotically smaller. The robustness of the high-frequency
approximation is well-established (see Amiet 1976, and others), and this is especially
the case for increasing Mach numbers, for which the acoustic reduced frequency is
increased.

Peake & Kerschen (1997) combined the Myers & Kerschen (1995) work with earlier
results for the cascade in a uniform stream (Peake 1992) to predict the upstream noise
generated by a cascade of flat plates at non-zero angle of attack. Our first aim in the
current paper is to include the effects of airfoil thickness and camber in this analysis.
The second extension we present here concerns the type of disturbance that impinges
on the stator vanes to produce sound (see figure 1). Whereas Peake & Kerschen (1997)
consider single harmonic vortical gusts, here we integrate a spectrum of such incident
waves to describe the rotor-wake turbulence. In doing this we are extending the work
of Hanson & Horan (1998) to include the effects of stator blade geometry. In uniform
flow only the normal velocity can generate noise (due to momentum blocking by
the blade), but once non-uniform flow is included the tangential component of the
incident gust velocity can also generate noise (in part by producing an unsteady stress
close to the airfoil nose). This leads to an additional source of broadband noise, which
is not present in the work of Hanson & Horan (1998), as well as contributing to the
tonal noise generated by single gust components. A difficulty which arises immediately
when trying to predict the cascade response, however, is that the amplitudes of the
plane-wave modes, as presented in Peake & Kerschen (1997), are only valid when
the modes are well cut-on and become singular as the modes approach cut-off. In
the cascade response to a complete turbulence spectrum, it is inevitable that some
modes generated are close to cut-off, and a uniformly valid solution which predicts
finite amplitudes for all possible values of the relevant parameters will therefore be
required. Peake & Kerschen (1995) derive such a solution for the flat-plate cascade,
and another aim of the present work is therefore to extend that analysis to include
the effects of non-uniform flow.

Determination of the steady flow can be completed in the context of thin-airfoil
theory using a pair of conformal mappings which map the cascade onto a single
airfoil. The effective incidence angle of the steady flow near each leading edge (which
differs from the angle of attack relative to the upstream flow due to the turning
effect of the cascade) is required for subsequent acoustic calculations, and analytical
expressions for this have been derived from the conformal mapping and are presented
in § 2. Indeed, the effective incidence angle is the only parameter which needs to be
calculated when one wants to predict time-averaged measures of the acoustic level, as
is usually done in practice and as is done throughout this paper. Prediction of the full
phase of the upstream radiation requires an expression for the complex disturbance
potential at upstream infinity, which can also easily be calculated from our conformal
mappings (see Evers 1999 for full details). The extension of the acoustic analysis of
Peake & Kerschen (1997) to include blade thickness and camber for a single incident
gust is described in § 3, with sample results showing the very significant effects which
this can have on the noise. However, these results become singular close to modal
cut-off, and in § 4 we describe how they can be rendered uniformly valid. Finally,
in § 5 we show, following Hanson & Horan (1998), how the response to a single
gust can be used to predict the broadband noise produced by a full turbulence
spectrum.
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Figure 2. The staggered cascade in (a) physical space, and (b) (φ, ψ)-space.

2. Mean flow
2.1. Steady formulation

We consider a two-dimensional linear cascade of blades, as shown in figure 2(a). The
blades are numbered from −∞ to ∞, and the leading edge of the zeroth blade is
fixed at the origin of the (x∗, y∗) coordinate system. The blades are regularly spaced,
with leading-edge separation ∆∗ and stagger angle α∗, equivalent to leading-edge
separations d∗ along the x∗-axis and s∗ along the y∗-axis, so that tan α∗ = s∗/d∗.
The upstream steady flow is aligned parallel with the x∗-axis, with subsonic speed
U∞ (Mach number M∞ < 1). The upper and lower surfaces of blade zero are
y∗ = δb∗N±(x∗) for 0 < x∗ < 2b∗, where b∗ is the airfoil semi-chord. The functions
N±(x∗) describe the blade thickness and camber distributions and the inclination to
the oncoming flow. We will suppose that δ � 1, as is standard in thin-airfoil theory.
We also suppose that N±(x∗) ∼ ±(2Rx∗/b∗)1/2 as x∗ ↓ 0, so that the blades have a
parabolic leading edge of radius Rb∗δ2. Note that in order to be able to treat the
steady mean flow as being strictly subsonic, we will require 1 −M∞ < O(δ2/3). For
transonic values of M∞, the sort of analysis described in Evers & Peake (2000) would
be required.

We introduce the Prandtl–Glauert transformation x = x∗/b∗ and y = β∞y∗/b∗,
where β∞ = (1 −M2∞)1/2. The horizontal leading edge separation is normalized to
d = d∗/b∗, while the vertical separation transforms to s = β∞s∗/b∗. Accordingly, ∆∗
and α∗ are replaced by

∆ = (d2
∗ + β2

∞s
2
∗)

1/2/b∗ and α = tan−1(β∞ tan α∗), (2.1)

respectively. As in Peake & Kerschen (1997), we use the dimensional potential and
streamfunction for the steady flow, φ∗ and ψ∗, to define the new coordinates

φ =
φ∗
U∞b

and ψ =
β∞ψ∗
U∞b

, (2.2)

and it follows that

ζ ≡ φ+ iψ = ζ0 + δF(ζ0) + O(δ2), (2.3)

where ζ0 = x+iy and δb∗U∞F is the complex disturbance potential for the steady flow.
To O(δ) accuracy the transformation to (φ, ψ)-space can be written as the Prandtl–
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Glauert transformation, φ = x∗/b+O(δ) and ψ = β∞y∗/b+O(δ), and the disturbance
potential can be expressed in the new coordinates according to F(ζ0) = F(ζ) + O(δ),
where ζ = φ+ iψ. Our choice of the arbitrary constant associated with the complex
potential leaves F(0) = 0, and it turns out that F consequently disappears at the
leading edge of every blade. The cascade in physical space is mapped onto a cascade
of straight-line segments in (φ, ψ)-space, with stagger α and leading-edge separation
∆ – see figure 2(b).

The steady disturbance flow is related to the equivalent incompressible complex
potential, Fi, according to F = Fi/β∞. To determine Fi, the usual rigid-surface
boundary condition is applied along the chord line of each blade, consistent with the
small-disturbance approximation δ � 1, and requires

−Im

(
dFi
dζ0

(x)

)
=

dN±

dx
(x) nd 6 x 6 nd+ 2 on y = ns, (2.4)

on each blade n. Far upstream and downstream we require that dFi/dζ0 → 0 and
dFi/dζ0 → const. as ζ0 → ∓∞ respectively, where the latter condition corresponds to
the O(δ) deflection of the oncoming flow by the cascade. The Kutta condition at the
blade trailing edges must also be enforced. In the next subsection we show how the
steady flow can be calculated, and in particular we develop an analytical expression
for the quantity which is required in subsequent acoustic calculations, namely the
strength of the flow near the blade leading edges.

2.2. Conformal mapping for steady flow

There are essentially two different approaches to the determination of the cascade
steady flow. First, transformation methods use one or a series of conformal transform-
ations that map the cascade onto simpler geometries with known flow potentials. For
instance, there is an exact transformation of a staggered cascade of zero-thickness
flat plates onto the circle (Grammel 1917; Robinson & Laurmann 1956). Merchant
& Collar (1941) show how the flow through a cascade of blades that resemble
Joukowski airfoils is related to that past a series of ovals, while others examine flows
through cascades of arbitrary airfoils using transformations onto the circle similar to
Theodorson’s transformation (e.g. Carter & Hughes 1946; Hall & Thwaites 1962).
These methods involve approximation errors resulting from the necessary truncation
of the infinite series of the conformal mapping functions, and particularly around the
blade leading edge the convergence of the transformation series can be poor. Goto &
Shirakura (1982) avoid this latter problem by choosing a conformal transformation
to a cascade of circles rather than to a single circle. However, the potential for the
circles, as well as the transformation itself, are in the form of series approximations,
and the leading-edge behaviour cannot easily be extracted.

Second, in the method of singularities the flow is modelled by distributing sources
and vortices along the chord or mean line for thin blades (Mellor 1959), or along the
surface for thick blades (Martensen 1971). In a modification of Schlichting (1955),
Mellor (1959) derives closed-form expressions for the velocity field induced by a
cascade of thin blades in terms of an infinite summation of triple integrals involving
the blade shape. Martensen (1971) uses a distribution of vortices around the profile
to obtain integral equations for the flow potential which are well-suited to numerical
solution. Indeed, the use of singularity distributions around the blade surface is
appropriate for numerical investigations of the flow problem for thick blades, but
is numerically unstable for thin blades and in any event does not yield convenient
closed-form expressions for the leading-edge flow.
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Figure 3. The series of conformal mappings used to calculate the steady flow.

In this subsection we indicate how a combination of the methods of conformal
mappings and singularity distributions can be used to provide an analytical expression
for the steady flow near the leading edges, which is exact within the context of thin-
airfoil theory and which can be calculated trivially. Our starting point is the conformal
transformation of the cascade in the ζ0-plane onto a single airfoil in the ζ2-plane.
Robinson & Laurmann (1956, p. 149, equation 2.11,12) describe a transformation of
a cascade of chord lines onto a circle in some complex space λ ≡ exp(iϑ), and a
second transformation of this circle onto a single airfoil can be achieved by taking
the blade separation in the inverse of this first transformation to infinity. Combining
these transformations, we find the conformal mapping ζ0 = Λ(ζ2) ≡ Λ̄(ϑ(ζ2)), where
ϑ(ζ2) = arccos(1− ζ2) and

Λ̄(ϑ) = 1 +
d

π
tan−1

{
2τ sin (ϑ− θ∗)

τ2 − 1

}
− s

π
tanh−1

{
2τ cos (ϑ− θ∗)

τ2 + 1

}
. (2.5)

Here the real constant τ > 1 is obtained from

∆

π

{
sin α sinh−1

(
2τ sin α

τ2 − 1

)
+ cos α sin−1

(
2τ cos α

τ2 + 1

)}
= 1, (2.6)

while

θ∗ = tan−1

{(
τ2 − 1

τ2 + 1

)
cot α

}
. (2.7)

The leading and trailing edges of the single airfoil, ζ2 = 0 and ζ2 = 2, are given
by ϑ = 0 and ϑ = π respectively, and the upper and lower halves of the circle in the
λ-plane, given by 0 6 Re(ϑ) < π and π 6 Re(ϑ) < 2π (both with Im ϑ = 0), map
to the upper and lower surfaces of the single airfoil in the ζ2-plane. In general two
points on either side of a cascade blade with the same coordinate Re(ζ0) map to two
points on either side of the single airfoil in the ζ2-plane with different coordinates
Re(ζ2). This will be of importance when we determine N±2 , the profile of the single
airfoil in the ζ2-plane. A diagram demonstrating the sequence of conformal mappings
used is shown in figure 3.

The total disturbance potential of the cascade in incompressible flow, Fi, is written
in the form Fi = F2+Fc, where F2 is the disturbance potential of the single airfoil in the
ζ2-plane. The contribution Fc arises because points at infinity in the ζ2-plane are not
mapped to points at infinity in the ζ0-plane, leading to inadmissible singularities in the
flow domain between the blades at ζ0 = 1 + (j+ 1/2)∆ exp(iα) for all integers j. These
are removed by adding a row of discrete vortices of, at this stage unknown, strength
Γ , which then account for the total circulation per blade (i.e. the potential F2 of the
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isolated airfoil does not contribute to the circulation in ζ0-space). This circulation
induces a non-zero flow far upstream with a complex potential that behaves like
Γ exp(−iα)ζ0/2∆ as ζ0 → −∞. In order to satisfy our far-field boundary condition
(that the disturbance to the uniform oncoming flow disappear far upstream) this term
must be subtracted from our solution. The complex potential Fc that cancels the
transformation singularities yet has the correct upstream behaviour is therefore

Fc(ζ0) =
iΓ

2π
log

{
1 + exp

(
2πi

∆
e−iα(ζ0 − 1)

)}
− iΓ

2π
log

{
1 + exp

(
−2πi

∆
e−iα

)}
. (2.8)

In this formulation, Fc(0) = 0 and the logarithmic branch cuts are straight lines that
extend downstream from the singularities in the direction normal to the face of the
cascade. The (normalized) circulation Γ is at this stage unknown but will depend,
through (2.12), on the profile function N±2 , which we determine next.

2.3. Solution for steady flow

In order to determine the disturbance potential for the single airfoil, F2, we need to
determine the effective boundary condition to be applied in ζ2-space, equivalent to
specifying the single-airfoil surface N±2 . The boundary condition for the single-airfoil
flow that is consistent with the cascade problem is found by substituting the cascade
disturbance potential, Fi(ζ0) = F2(Λ

−1(ζ0))+Fc(ζ0), into (2.4) and expressing the result
in ζ2-space. It proves convenient to define the odd and even parts of the single-airfoil
surfaces by N2o = (N+

2 +N−2 )/2 and N2e = (N+
2 −N−2 )/2 respectively, and it turns out

that

dN2o,2e

dx2

(θ) =
1

2

[
dN+

dx
+ (A0 − A1)Vc

] (
Λ̄(θ)

) dΛ̄

dζ2

(θ)

± 1

2

[
dN−

dx
+
Γ

π
Vc

] (
Λ̄(−θ)

) dΛ̄

dζ2

(−θ), (2.9)

where

Vc(ζ0) ≡ π

Γ
Im

(
dFc
dζ0

(ζ0)

)
=

π

2∆
Re
{

e−iα tan
( π
∆

e−iα(ζ0 − 1)
)}
− π

2∆
sin α. (2.10)

Here θ = arccos(1 − x2) on the blade surface (where x2 = Re(ζ2)). Equation (2.9)
does not correspond to the odd and even parts of the blade profiles in physical space,
because Λ̄(−θ) 6= Λ̄(θ) in general. Consequently, there can exist an antisymmetric
cascade flow (and a corresponding non-zero lift) even when the blades are symmetric
and the angle of attack is zero, but only when the cascade is staggered.

Determination of the disturbance potential for a thin isolated airfoil of prescribed
shape is completed in a standard fashion by introducing distributions of point
vortices (corresponding to the odd part of the shape distribution N2o) and mass
sources (corresponding to the even part N2e) on the airfoil chord. For instance, one
writes the vortex strength per unit chordwise distance as

γ(θ) = −A0 cot (θ/2) + 2

∞∑
n=1

An sin nθ, (2.11)

accounting for the lift-induced flow. Note that the first term on the right-hand side
of (2.11) accounts for the leading-edge singularity (as θ → 0), which is a feature
of thin-airfoil theory, so that A0 is proportional to the strength of the leading-edge
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Figure 4. Pressure coefficient for a cascade of NACA0005 airfoils with 6◦ angle of attack, using the
current thin-airfoil theory (solid line) and a numerical solution (dashed). Here, α = 45◦, ∆ = 3 and
the flow is assumed incompressible.

vortex introduced to model this singularity. The Fourier coefficients are given by

An =
2

π

∫ π

0

N ′2o(θ) cos nθ dθ, n = 0, 1, 2, . . . (2.12)

(see Houghton & Carruthers 1982, for example). Similarly, the thickness-induced mass
source terms can also be written as a Fourier series, with coefficients Bn say. Both
sets of Fourier coefficients can be calculated by substituting (2.9) into (2.12), and into
the equivalent result for the Bn, and once all the Fourier coefficients are known the
full disturbance complex potential F2(ζ2) can be recovered using standard results for
the complex potential of simple sources. However, for the purposes of the acoustic
calculations to follow it turns out that we only need to know A0 and A1, and after
considerable but straightforward algebra it turns out that(
A0

A1

)
=

1

1 +A1(Vc)−A0(Vc)

(
1 +A1(Vc) −A0(Vc)

A1(Vc) 1−A0(Vc)

)( A0(dN
+/dx, dN−/dx)

A1(dN
+/dx, dN−/dx)

)
,

(2.13)

where we use the notation

An(f, g) =
1

π

∫ π

0

[
f
(
Λ̄(θ)

) dΛ̄

dz2

(θ) + g(Λ̄(−θ))
dΛ̄

dz2

(−θ)

]
cos nθ dθ (2.14)

for functions f, g : [0, 2] → R, with A0,1(f) ≡ A0,1(f, f). The remaining coefficients
An and Bn are given explicitly by single integrals of functions of the blade slopes,
and could be determined in a similar manner. Full details of these calculations are
given in Evers (1999), but in order to demonstrate the accuracy of our thin-airfoil
approximation here a comparison is made with a numerical solution in figure 4. The
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numerical solution is found from the panel method introduced by Martensen (1959),
implemented according to Lewis (1991), in which vortices are distributed along the
genuine cascade blade surfaces and their strengths determined by specifying zero
velocity across the profile boundaries.

It can be shown that the blade circulation Γ is given by Γ = π(A0−A1). As stated
in the previous paragraph, the steady flow within O(δ) of the leading edge of each
blade is crucial to the acoustics which follow. Writing the total complex disturbance
potential F as a sum of odd (Fo, lift-induced) and even (Fe, thickness induced) parts,
it can be shown that near the leading edge of blade zero, i.e. as ζ → 0, we have

F ≡ Fo + Fe ∼ 23/2Lζ1/2

β∞
− i(2R)1/2ζ1/2

β∞
, (2.15)

where

L = − A0(τ
2 − 1)π1/2

2(2∆τ)1/2(τ2 + 1)1/2

(
cos θ∗

sin α

)3/2

, (2.16)

and we recall that the parabolic leading edge of each blade has radius Rb∗δ2. We point
out that the symmetric component of the leading-order velocity potential depends
only on the local radius of curvature, and not on the profile shape further downstream
nor on the cascade (which have an effect at higher order in δ and on higher terms in
the expansion about ζ = 0). The effects of the cascade enter the leading-edge region
through the antisymmetric part of the flow, and we recall that A0 is proportional
to the strength of the vortex which models the thin-airfoil leading-edge singularity.
The effective incidence angle of the steady flow onto the blade leading edges is
in fact L/β∞, where the usual Prandtl–Glauert factor accounts for the effects of
compressibility. This angle is smaller than the angle of attack to the far upstream
flow, due to the turning effect of the cascade. We emphasize that we have determined
an analytical expression for L here, and it will turn out that the value of L is the only
information about the steady flow which needs to be calculated in order to predict
the upstream acoustic energy flux.

Our thin-airfoil theory breaks down in a region whose size scales on the airfoil
nose radius around the leading-edge stagnation point of each blade, i.e. regions of
size O(δ2). Here the flow can no longer be considered to be a small perturbation to
the uniform stream, and our linearization of the steady flow and the Prandtl–Glauert
transformation are therefore invalid within O(δ2) of a leading-edge stagnation point.
In this paper we will be concerned with unsteady disturbances which have wavelength
of size O(δ), and in particular we will be concerned with matching what we will call the
inner region, of size O(δ) around the leading edge, onto the outer flow. It follows that
thin-airfoil theory will be valid throughout this inner region, apart from in the small
inner-inner region of size O(δ2) around the stagnation point. This inner-inner region
does not affect the asymptotic matching to the order to be considered in this paper,
although of course it could well become important at higher order, or if one were to
consider gust interaction with a bluff body in which the nose radius is O(δ), rather
than the O(δ2) value assumed in thin-airfoil theory. The result that the disturbance
potential F(ζ) is proportional to ζ1/2 close to each leading edge (see equation (2.15))
is a direct consequence of thin-airfoil theory, and following the above remarks can be
used in determining the gust interaction in the inner region. One consequence of (2.15)
is then that the phase distortion experienced by any gust approaching the stagnation
point will remain bounded as it passes through our inner region. It is well-known
that the phase distortion of a convected gust diverges logarithmically as the gust
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approaches a stagnation point (see Atassi & Grzedzinski 1989), but this divergence
occurs within a region of size O(δ2) around the leading edge, and therefore again
does not affect our asymptotic approximation of the gust–airfoil interaction in the
O(δ) inner region.

3. Unsteady response to a harmonic gust
3.1. Single airfoil

We proceed as in Peake & Kerschen (1997) and introduce the convected disturbances
as vortical harmonic waves of frequency ω. We consider these waves to be Fourier
components of the incident turbulence field, which will be calculated in § 5. Upstream
we thus consider the unsteady velocity component v′ in the form

v′ = εU∞(At, An, Az)e
ik(φ+knψ+k3z)−iωt as φ→ −∞, (3.1)

where k = ωb/U∞ is the aerodynamic reduced frequency and z = z∗/b is the spanwise
coordinate normalized by the semi-chord. The amplitudes At, An and A3 of the gust
components and the wavenumbers kn and k3 satisfy the condition At+β∞knAn+k3A3 =
0 for divergence-free flow far upstream. For the analysis that is presented here to be
valid, we require ε � δ � 1, where ε is a measure of the amplitude of the unsteady
flow. This allows the unsteady flow to be linearized about the non-uniform steady
base flow, and implies that the forward stagnation point remains within a vanishingly
small (i.e. O(δ2)) distance of the leading edge.

Based on Goldstein’s convected wave equation (see Goldstein 1978), Myers & Ker-
schen (1995) construct a linear, asymptotic boundary-value problem for the modified
unsteady potential h(φ, ψ), which is related to the physical potential G′(φ, ψ) of the
unsteady flow by

G′(φ, ψ) = εU∞bh(φ, ψ) exp[ik(k3z − t−M2
∞φ/β

2
∞) +M2

∞δq]. (3.2)

The dimensional steady flow speed is written asU∞(1+δq), so that q(φ, ψ) corresponds
to the perturbation to the upstream steady flow speed induced by the presence of the
cascade. Kerschen & Myers (1986) show that h satisfies a wave equation of the form

(L0 + δL1)(h) = δkS(φ, ψ) exp(ikΩ), (3.3)

where L0 ≡ ∇2 + k2w2, and kw is the acoustic reduced frequency, with

w2 =

(
M∞
β2∞

)2

−
(
k3

β∞

)2

. (3.4)

Equation (3.3) is an O(δ) perturbation to the Helmholtz equation, accounting for the
non-uniform mean flow. Complicated expressions for the perturbation to the uniform-
flow wave operator, δL1, and the perturbation source term, δkS (φ, ψ) exp(ikΩ), are
given by Myers & Kerschen (1995). In the asymptotic limits being considered, for
large k and small δ, this source term can be neglected everywhere apart from close to
the blade leading edge, where the mean-flow gradients are large. This means that the
volume sources are located in the inner region, of size O(δ), around the leading edge,
and arise from the local interaction between the gust and the mean-flow gradients. In
uniform flow, sound is generated only by the blocking of unsteady gust momentum
at the rigid blade surface, a process dominated for large kw by the leading edge, but
for non-uniform flow this process is augmented by these volume sources. In the outer
region, away from the leading edge, for large kw one is left to solve a ray tracing
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problem through a medium which is almost uniform (i.e. with steady perturbations
and flow gradients which are O(δ)). The unsteady field generated in the inner region
then matches onto a ray field in the outer region emanating from the leading edge.
Full mathematical details behind these arguments are given in Myers & Kerschen
(1997).

Neglecting for the moment the interaction between the leading-edge rays and other
blades, it turns out that the radiation emitted from the leading edge of the zeroth
blade in the cascade has modified potential h0(φ, ψ) of the form

h0(φ, ψ) =
D(θ;AN, At)

k3/2r1/2
exp[ik(wr + δP (r, θ) + δgl)], (3.5)

where r = (φ2 + ψ2)1/2 and θ = tan−1(ψ/φ) are polar coordinates. δgl represents
the phase distortion, or drift, experienced by the gust in propagating from upstream
infinity to the leading edge, and is given by δgl = 2δRe[F(−∞)] – see Myers &
Kerschen (1995). (Note here that within the context of thin-airfoil theory δgl is finite –
see the discussion at the end of the previous section.) The phase distortion of the ray
field due to its propagation through the non-uniform outer flow is represented by the
function P (r, θ) = V (θ)Q(r, θ), where

V (θ) = −β2
∞w +

(γ + 1)M4∞
2β2∞w

(
1

β2∞
− w cos θ

)2

, (3.6)

Q(r, θ) = Re(e−iθF(reiθ)). (3.7)

This phase distortion can be obtained by seeking a ray solution of the homogeneous
version of equation (3.3) in the outer region. In our preferred limit, the influence
of mean-flow gradients on the phase in (3.5) is O(kδ) = O(1), and this will have a
marked effect on amplitude terms of the forward radiation due to the various cascade
effects. The directivity function D(θ;AN, At) of equation (3.5) is the directivity for
the radiation from the leading edge of a flat plate plus an O(δk1/2) contribution
that represents the effects of the symmetric and antisymmetric components of the
non-uniform mean flow. This combination is determined by comparing the leading-
edge flows of the thick, unloaded airflow studied in Tsai & Kerschen (1990) and the
infinitely thin cambered and loaded airfoil studied in Myers & Kerschen (1995) with
the leading-edge flow for our cascade (i.e. equation (2.15)). In this way we obtain

D(θ;AN, At) = D0(θ;AN) + δk1/2[LDL(θ;AN, At) + R1/2DR(θ;AN, At)], (3.8)

where

D0(θ;AN) =
Ane

−πi/4 cos(θ/2)

β∞π1/2(w cos θ − β−2∞ )(w + β−2∞ )1/2
(3.9)

is the leading-edge directivity of a flat plate in uniform flow, and the complicated
functions DL and DR are taken from Myers & Kerschen (1995) (specifically DL =
D1 + D2 + D3, given by their equations (3.11b), (3.15b–e) and (3.26c)) and Tsai &
Kerschen (1990) (Dt = K1 + K2 + K3, their equations 10b, 12b and 14b). It will
be convenient to extract the (linear) dependence of the directivity on normal and
streamwise gust amplitudes, AN and At, by writing alternatively

D(θ) = ANDN(θ) + AtDt(θ), (3.10)

where DN(θ) = D(θ; 1, 0) and Dt(θ) = D(θ; 0, 1). We note that Dt(θ) = O(δk1/2),
corresponding to the fact that the tangential gust velocity can only generate noise in
the presence of non-uniform mean flow.
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In summary, the results presented here correspond to the first two terms in both
the amplitude and phase of the noise produced by the interaction between an isolated
airfoil and a gust. This has been completed in the limit k � 1, δ � 1 with kδ = O(1).
Implicit in this, however, has been the assumption that kw � 1 as well, which is
required at various points in the analysis including the ray tracing in the outer region.
Note that the condition kw � 1 can be violated when k � 1 is large if w is small, for
instance if the Mach number is small.

3.2. Cascade

To determine the total radiation upstream of the cascade we need only consider the
leading-edge sources described above because other sources, notably the scattering of
the leading-edge field by the trailing-edge, see Peake & Kerschen (1997), are a factor
O(kw)−1 smaller than the leading-order solution. The total acoustic field upstream of
the cascade can then be modelled using a row of isolated-airfoil ray fields centred on
the blade leading edges. The sound from each leading edge can subsequently interact
with other blades in the cascade, and Peake & Kerschen (1997) identify the following
acoustic components that reach an upstream observer:

(i) The sound waves generated by the interaction between a gust and an individual
blade, described by the ray field (3.5) for the zeroth blade, can travel directly upstream
without interacting with any other blades. We refer to this as the direct field. The
modified velocity potential of the direct field from leading edge zero is precisely
h0(φ, ψ), as given in the previous subsection. The quasi-periodicity of the cascade–
gust interaction in the transverse direction means that the direct field from the nth
leading edge is

hn(φn, ψn) = einσ′h0(φ, ψ), (3.11)

where φn = φ− nd and ψn = φ− ns are potential-streamfunction coordinates centred
on the nth leading edge. Here

σ′ = σ + kM2
∞d/β

2
∞ and σ = k(d+ kns). (3.12)

The quasi-periodicity of the scattered field is a direct consequence of the fact that the
incident gust imposes on the problem a wavenumber along the line of the leading
edges, and (3.12) is obtained directly from (3.1) and (3.2). If rn and θn are the
polar coordinates centred on the nth leading edge, then the direct field from blade n
reaches observers lying within α < θn < π+ α. The phase distortion a ray experiences
in travelling directly from the nth leading edge to an observer in this sector far
upstream, kδp1 say, is given by the change in kδP (rn, θn) over this distance, and since
P (0, θn) = 0 (because we have chosen F(0) = 0), we find

p1(θn) = P (∞, θn) = V (θn) Re(e−iθnF(−∞)). (3.13)

Here F(−∞) is obtained from the description of the steady field described in the
previous section, and full analytical expressions are given in Evers (1999).

(ii) The direct field from each leading edge travels along the front face of the
cascade and undergoes a complicated Fresnel-diffraction process as it interacts with
all other blade leading edges. This interaction leads to more radiation being scattered
upstream. To leading order in k, the radiation from blade 0 that reaches the leading
edge of the nth blade is a fraction 1/n of the direct field that would have reached
the nth blade had the intervening blades not been present (Peake & Kerschen 1997).
If we consider the converse, namely the amount of radiation that reaches the zeroth
blade from the nth leading edge, we conclude that this is proportional to n−3/2∆−1/2,
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0
A

B
C – 1

Figure 5. Reflections between blade n and blade n− 1.

due to the cylindrical spreading of hn. Since F = 0 at each blade leading edge,
the field experiences no net phase distortion in propagating from one leading edge
to another. A standard application of the Wiener–Hopf technique then gives the
upstream radiation due to the rescattering of this incident field. This contribution to
the upstream radiation is O(k−1/2) smaller than the direct field, which means that in
this rescattering problem the effects of local volume sources around leading edge zero
can be neglected to the asymptotic order we consider.

(iii) In a staggered cascade the direct field from a given leading edge may be
reflected arbitrarily many times by the adjacent lower blade before it is rescattered
by the leading edge. Consider a ray that travels from a given leading edge (point
A in figure 5) to the adjacent lower blade (point B) and back up to A. The phase
distortion experienced by the ray over one complete reflection is denoted kδp2, and
by noting that B lies at rn = s, θn = 3π/2 and application of equation (3.6) it is easy
to show that

p2 = −2V (π/2) Im(F(−is)). (3.14)

The imaginary part of F(ζ) on the blade upper and lower surfaces is found by
integrating the boundary condition (2.4) with respect to φ, giving Im(F(φ ± 0i)) =
−N±(φ)/β∞ on the upper and lower surfaces of blade n respectively, from which we
find that

p2 =
2V (π/2)

β∞
N+(d). (3.15)

The distortion kδp2 is compounded for every reflection cycle, while the amplitude after
the nth cycle decays like n−3/2(2s)−1/2. This latter point follows because the multiply
reflected field is undergoing the same Fresnel process as quoted in point (ii) above for
the decay of the direct field along the front face of the cascade; the multiply reflected
field can be modelled as if being generated by a series of image sources at distances
2ns below the leading edge, and the fraction of the direct field which returns to the
leading edge after n reflections by the lower blade is, to leading order in kw, 1/n.
Equation (3.15) is the generalization of equations (5.10) in Peake & Kerschen (1997)
to include the effects of thickness and camber, and Peake & Kerschen’s result is
regained by setting N+(φ) = −φ to represent a flat-plate airfoil at non-zero incidence
angle δ.
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(iv) A ray of the direct field which travels at the angle −θn will be reflected by
the adjacent lower blade and will propagate upstream if π/2 < θn < π − α (e.g. the
ray that reflects at point C in figure 5). The phase distortion experienced in travelling
from A to the observer via C is denoted kδ[p1(θn) + p3(θn)], and in much the same
way as was used to determined p2 it follows that

p3(θn) =
2

β∞
V (θn)N

+(φC) sin θn, (3.16)

where φC is the distance from the leading edge of blade n − 1 to the point of
reflection, specifically φC = s(cot α + cot θn). Equation (3.16) is the generalization of
equation (5.12) in Peake & Kerschen (1997) to include the effects of thickness and
camber, and once again their result can be regained by setting N(φ) = −φ.

The total radiation upstream is now determined by adding together the direct
field (contribution i above) and the rescattered field, with the latter made up of
contributions from the rescattering of other leading-edge fields by a given leading
edge (contribution ii above) together with the multiple reflection by the adjacent
blade (contribution iii above). Reflection of the total field from a given leading edge
(contribution iv above) is also included. This leads to an infinite sum of cylindrically
decaying fields, which can be converted into a summation of plane-wave modes via
Poisson summation. In essence, the idea is that the radiation from the discrete row
of point sources is written down in the form of an integral along the entire front
face of the cascade, by use of an infinite series of delta functions in the integrand.
Poisson’s formula is then used to convert this series into an infinite series of plane
waves, and then the method of stationary phase is used to approximate each integral,
in the limit of large kw. Each element in the sum then corresponds to a plane-wave
mode upstream of the cascade, only a finite number of which are cut on and therefore
propagate to the far field. The details of this procedure are exactly as in the flat-plate
case of Peake & Kerschen (1997), and need not be repeated here. We find that the
upstream radiation takes the form

h ∼
nq∑
n=nr

Rn exp[ik(wr cos(θ − θns ) + δgl + δp1(θ
n
s ))], (3.17)

where the angle of propagation of the nth mode is

θns = α+ arccos

(
σ′ − 2nπ

∆kw

)
, (3.18)

restricted to the angles α < θns < α+ π. Here the modal coefficients are given by

Rn =
eπi/4(2π)1/2F(θns )

∆k2w1/2 sin(θns − α) [ANEN(θns ) + AtEt(θ
n
s )], (3.19)

where

EN,t(θ
n
s ) = DN,t(θ

n
s ) + exp[2ikws sin θns + ikδp3(θ

n
s )]

×[H(θns − π/2)−H(θns − π+ α)]DN,t(2π− θns ), (3.20)

H(·) is the unit step function and F(θns ) is given by

F(θns ) = 1− i(M̃ cos θns − 1)

M̃(kw)1/2

(
21/2 cos(α/2)C1

cos θns + cos α
− 21/2 sin(α/2)C2

cos θns − cos α
− C3

cos θns

)
, (3.21)
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where

C1 =
M̃e−πi/4 sin(α/2)

(π∆)1/2(M̃ cos α+ 1)

∞∑
m=1

exp[i(kw∆+ σ′)m]

m3/2
, (3.22)

C2 =
M̃e−πi/4 cos(α/2)

(π∆)1/2(M̃ cos α− 1)

∞∑
m=1

exp[i(kw∆− σ′)m]

m3/2
, (3.23)

C3 =
M̃e−πi/4

2(πs)1/2

∞∑
m=1

exp[i(2kws+ kδp2)m]

m3/2
(3.24)

and M̃ = β2∞w = (M2∞ − β2∞k2
3)1/2, which satisfies 0 < M̃ < 1 for cut-on values of k3.

The C1 term corresponds to the rescattering by blade n of the direct fields from blades
n + m,m = 1, 2, . . . , the C2 term corresponds to the rescattering of the direct fields
from blades n−m, m = 1, 2, . . . and the C3 term corresponds to the multiple reflections
of the direct field from blade n by blade n− 1. That is, the terms C1,2 correspond to
contribution (ii) described earlier, while C3 corresponds to contribution (iii).

The indices nr and nq are the lowest and highest integers n such that |2nπ−σ′| 6 ∆kw,
so that any modes with indices inside this range are propagating and the modes
outside are cut off. Note that the expression for Rn in equation (3.19) is singular when
θns = α, π + α, corresponding to that mode becoming cut off, and is also singular
when θns = π/2, π− α in equation (3.21), corresponding to the presence of the shadow
boundary in contributions (iii) and (ii) respectively. The step functions in (3.20) show
that mode angles in the range π/2 < θns < π− α include contributions from the direct
reflections (contribution iv).

The influence of blade geometry is contained in the higher-order components of
the directivity function D(θ) and in the following phase terms. In (3.17), kδgl is the
phase distortion experienced by the gust as it travels towards the cascade, while
kδp1(θn) is the distortion experienced by the acoustic waves that propagate upstream
away from the cascade. Rays that are reflected by the blade surfaces into the region
π− α 6 θ 6 π/2, which are represented by the second term on the right-hand side of
(3.20), experience an additional distortion kδp3(θn). Finally, the distortion associated
with the bouncing mode, kδp2, appears in the constant C3.

3.3. Sample results

At this stage a numerical investigation of the results is restricted by the presence
of singularities in the equations that correspond to cut-off conditions and shadow
boundaries. We therefore fix a representative combination of admissible gust par-
ameters so that the waves are well cut on and are well away from the shadow
boundaries, allowing an examination of the influence of blade geometry on the
acoustic response. For simplicity we assume that the gust is purely two-dimensional,
so that k3 = A3 = 0. The gust wavenumbers are fixed by setting k = 10 and the
inter-blade phase angle is σ = 3π. We also take α∗ = π/4, ∆∗/b∗ = 3/2 and M∞ = 0.5.
The remaining gust parameters At and An are then determined by the solenoidal
condition and the normalization A2

t + A2
n = 1. In this case there are three cut-on

modes upstream, with nr = 1 and nq = 3.

The time-averaged upstream energy flux per unit blade passage is ρ∞U3∞b∗E, and
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Figure 6. Normalized energy flux for a cascade of NACA 00XX blades
for varying angle of attack.
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Figure 7. Normalized energy flux for a cascade of NACA 00XX blades at angle of attack
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an expression for E, given in Peake & Kerschen (1995), is

E =
∆k2wβ2∞

2

nq∑
n=nr

sin(θns − α)|Rn|2. (3.25)

It is easy to see that E is independent of both the drift δkgl and the direct-field phase
distortion δkp1, confirming that the value of F(−∞) from our steady-flow solution is
not required. As a method of assessing the effects of the blade geometry on the noise,
we plot the change in sound power level (i.e. 10 log10 E), with the flat-plate unloaded
value of E taken as the reference level. In figures 6 and 7 we consider uncambered
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NACA 00XX blades, with varying angle of attack for different blade thickness ratios,
and with varying thickness ratios for different angles of attack respectively. It is clear
that thickness and incidence can enhance as well as reduce the radiation, and changes
to the intensity extend over more than 10 dB over the range considered. The effect of
varying the camber of NACA four-digit sections is shown in figure 8, and significant
changes on a decibel scale are again observed.

The significant effects seen in the figures 6–8 arise from the asymptotic corrections
we have calculated. The correction to the amplitude of the radiation from a single
blade is of size O(δk1/2) compared to the flat-plate result. This is formally a small
number, although in practical applications it may not be very small, but in any event
it cannot account for the large decibel changes in the acoustic energy as the airfoil
geometry is varied. The explanation for the large variations seen in figures 6–8 lies
instead in the asymptotic correction to the phases of the various noise components,
which is of size O(kδ) (and is therefore O(1) in our preferred limit). Because the
interference between many sources is a characteristic feature of cascade noise, it
follows that these O(1) phase corrections must have a big effect. For instance, if
we consider just the leading-order directivity (i.e. without the O(δk1/2) correction), it
follows from equation (3.20) that the amplitude of an upstream mode is proportional
to

|1− exp(2ikws sin θns + ikδp3(θ
n
s ))|. (3.26)

This represents the sum of the direct field from a given leading edge and the
reflection of that field by the lower blade (provided that the mode angle satisfies
π/2 < θns < π−α), and we recall that p3(θ

n
s ) is related to the extra mean-flow distortion

experienced by the reflected ray. The direct and reflected fields will precisely cancel
(total destructive interference), or add exactly in phase (total constructive interference),
when the argument of the exponential in (3.26) is an even, or odd, integer multiple
of πi respectively. This means that the amplitude of the upstream mode is zero, or
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maximal, when the modal propagation angle satisfies

θns = sin−1

[
Nπ− kδp3(θ

n
s )

2kw

]
(3.27)

for integer N even, or odd, respectively. Hence, since kδp3(θ
n
s ) = O(1), it follows that

the non-uniform mean flow can have the effect of making significant changes to the
propagation angles along which the modes have zero, or maximal, amplitude. Most
dramatically, if kδp3(θ

n
s ) > π, it follows that there is the possibility of non-uniform

mean flow causing what would have been a total destructive interference for uniform
flow to be replaced by total constructive interference for a given mode, and vice versa.
Even if such extreme cases do not occur, it is clear that the non-uniform mean flow
can induce significant changes in the way in which the different sources interfere with
each other, which then leads to large decibel changes in the relative noise levels, as
plotted in figures 6–8. Another point is that the sharp peaks shown in figures 6–8 are
characteristic of cascade noise, and by plotting out the relative effects of the various
cascade contributions it can be shown that they are caused by the multiple reflections
between adjacent blades, i.e. contribution (iii).

From the specimen results shown in this subsection we may conclude that the
effects of blade geometry on the tonal components of rotor–stator interaction noise
can be very significant.

4. Uniformly valid solution
The expressions (3.19) and (3.21) show that the plane-wave amplitudes are singular

at the cut-off conditions θns = α and θns = α+ π (i.e. when the modes are propagating
along the front face of the cascade), and for mode angles aligned with the shadow
boundaries associated with reflection of the direct field by the adjacent blade, i.e.
θns = π/2 and θns = π − α. Following the analysis of Peake & Kerschen (1995) for
uniform flow, these singularities can be removed by replacing (3.21) with a uniformly
valid expression for F(θns ). This expression will be finite for all possible mode angles,
and will vanish at cut-off in order to cancel the factor 1/ sin(θns −α) multiplyingF(θns )
in (3.19).

The derivation of non-singular expressions for the upstream radiation in uniform
flow (Peake & Kerschen 1995) is based on a factorization of the generic Wiener–
Hopf kernel for the cascade in terms of Fourier integrals, and on the steepest-descent
evaluation of these integrals in the high-frequency limit. Each of the integrals possesses
a pole and a saddle point, and it is explained in Peake & Kerschen (1995) that the
singularities occur at the critical mode angles when the poles approach the saddle
points. The Van Der Waerden (1950) method is therefore used instead of the method
of steepest descent to obtain a uniformly valid expansion of the Wiener–Hopf factors.
In order to include mean-flow distortion in these results, one simply has to compare
results (3.17)–(3.21) here with Peake & Kerschen (1995). In fact, our factor F(θns ) is
closely related to the factor L−(−k/β2∞)L+(−kw cos θns ) in equations (14) and (16)
of Peake & Kerschen (1995), where L−(λ)L+(λ) is the factorization of the Wiener–
Hopf kernel L(λ) in the complex λ-plane given by relations (16) and (18) of Peake &
Kerschen (1995). More precisely, we write

F(θns ) =F−(−k/β2
∞)F+(−kw cos θns ), (4.1)

where the complex functions F±(λ) are identical to the functions L±(λ) found in
Peake & Kerschen (1995), but not including contributions from the poles of the
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corresponding integrals. These poles account for the direct reflections, which we have
already included in the factors EN,t(θ

n
s ) via the step-function terms in (3.20). Once

this point has been accounted for, however, it is possible to read the uniformly valid
results from Peake & Kerschen (1995) straight across into the present work. The only
modification which is required to account for non-uniform mean flow is to include
the phase distortion of the bouncing mode (contribution iii in the previous section),
which will be described below.

The factorF−(−k/β2∞) in (4.1) is never singular, and following the previous section
we can write

F−(−k/β2
∞) = 1− i

(kw)1/2
(21/2 cos(α/2)C1 − 21/2 sin(α/2)C2 − C3), (4.2)

with the constants C1–3 given by (3.22)–(3.24) as before. The uniform expansion of
Peake & Kerschen (1995) is used to correct the second term in (4.1), and we find that

F+(−kw cos θns ) = exp

(
eπi/4

2(πkw)1/2

∞∑
m=1

m−3/2(I1 + I2 + I3)

)
. (4.3)

The terms I1–3 inside the summation, which depend on m and the mode index n, are

I1,2 = exp{imkw∆[1± cos(θns − α)]} sgn(cos θns ± cos α)

×
[
(πkwm)1/2e−πi/4w(eπi/4(kwmΥ1,2)

1/2) +
21/2 sin α

∆1/2| cos θns ± cos α| − Υ
−1/2
1,2

]
(4.4)

and

I3 = − exp{2imkws+ imkδp2} sgn(cos θns )

×[(πkwm)1/2e−πi/4w(eπi/4(kwmΥ3)
1/2) + s−1/2| cos θns |−1 − Υ−1/2

3 ], (4.5)

where

Υ1,2 = ∆(1± cos θns cos α− | sin θns | sin α), (4.6)

Υ3 = 2s(1− | sin θns |), (4.7)

and w(z) ≡ exp(−z2) erfc(−iz) (see Abramowitz & Stegun 1972). The modification to
include the phase distortion kδp2 of the bouncing mode (contribution iii) is now clear:
the factor exp(2imkws) in the first term in (4.5) corresponds to the phase change of a
ray which is reflected m times between the leading edge of a blade and the adjacent
lower blade in uniform flow, so to include the flow distortion we need only introduce
the additional phase term mkδp2. The other phase distortion terms from § 3.2, δkp1,3,
have already been included elsewhere in our formulae, and have no bearing on the
uniform expression forF(θns ). The occurrence of the error functions in equations (4.4)
and (4.5) is of course characteristic of the uniform asymptotic description of a pole
close to a saddle in a steepest descent integral (see Jones 1986, p. 718).

We briefly check the validity of our uniform expression for F(θns ) by considering
the critical mode angles in turn. First we note that when the mode angle is not near
one of its critical values, Υ1–3 are O(1) and the error functions in (4.4) and (4.5) and
the exponential in (4.3) can be expanded for large kw so that (3.21) is recovered
to O((kw)−1/2). When θns approaches the shadow boundary at π/2, the function Υ3

vanishes, the error function in (4.5) approaches unity, and the singularities of the
remaining two terms in (4.5) cancel. Consequently, I3, the summation of I3 over m
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Figure 9. Normalized acoustic energy vs. gust angle ahead of a cascade of NACA 0006 blades at
5◦ angle of attack, calculated with the uniformly valid equations (solid line) and compared with the
previous solution (dashed line). Relevant parameters are ∆∗ = b, α∗ = π/2, k = 5 and M∞ = 0.5.

and henceF+ are well-defined. A similar structure is found in the expression for I1 in
the limit θns → π− α, the other shadow boundary. When the mode angle approaches
the cut-off condition θns = α, we see that Υ2 → 0 and

I2 → −(πkwm)1/2e−πi/4 + (2∆)−1/2 cot α. (4.8)

It follows that F+ → 0 as θns → α, and that the 1/ sin(θns − α) singularity in (3.19) is
cancelled. Similarly, I1 is responsible for cancelling this singularity as θns → π+ α.

We now present numerical results from these uniformly valid equations. We consider
a two-dimensional purely vortical gust interacting with a cascade of NACA 0006
airfoils, with angle of attack ι∞ = 5◦, k = 10, σ = 3π, ∆∗ = b and α∗ = π/2, and
compare the results for the upstream energy E in figure 9. There is close agreement
between the results of § 3 and § 4 when all the modes are well cut-on, but when at
least one of the upstream modes comes close to cut-off the non-uniform predictions
of § 3 are no longer valid. This figure demonstrates the importance of having a
uniform description of the cascade response since, especially at high frequency, all
the upstream modes are well cut-on over only a relatively small portion of parameter
space.

Finally in this section, we compare in figure 10 our asymptotic results (specifically
the uniformly valid expressions from this section) with a numerical solution. The
numerical solution is taken straight from results presented by Abdelhamid & Atassi
(2000), and was obtained by direct solution of Goldstein’s convected wave equation
(see Goldstein 1978), i.e. the same equation as has been analysed asymptotically in
this paper. Further details of these computations are given in Atassi, Fang & Patrick
(1993). The quantity being compared is the amplitude of the pressure associated with
the nth upstream mode as a function of reduced frequency based on full-chord (i.e.
2k), for consistency with Abdelhamid & Atassi (2000). In our notation this pressure
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Figure 10. Comparison between results from our asymptotic scheme (lines) and numerical results
taken from figure 7(a) of Abdelhamid & Atassi (2000) (symbols). We have plotted the variation of
the pressure amplitude of the n = 1 mode upstream against 2k, for M∞ = 0.3, ∆∗ = 2, and α∗ = π/4.
The gust is one-dimensional, so that kn = k3 = 0, and At = A3 = 0, An = 1. The airfoils are at zero
incidence to the upstream flow, and have zero camber; the solid line and diamond symbols are for
zero-thickness flat plates, while the dashed line and cross symbols are for NACA 0012 airfoils.

amplitude is given by ∣∣∣∣kw cos θns − k

β2∞

∣∣∣∣ |Rn|, (4.9)

and the mode in question is only cut-on over the range of k values for which our
asymptotic results have been plotted. The agreement seems fair, although it is noted
that the parameter values used are not perhaps large enough for our asymptotics to
be completely reliable. In particular, our asymptotics require both the aerodynamic
reduced frequency, k, and the acoustic reduced frequency, kw, to be large. When
k3 = 0, kw = kM∞/(1 −M2∞), and since M∞ = 0.3 in the relevant Abdelhamid &
Atassi results, this second condition is not really satisfied (in figure 10 we have
0.99 < kw < 2.27). The largest discrepancy between the two sets of results occurs for
the lowest and highest frequencies shown, which is where this particular mode is close
to cut-off. This perhaps indicates that the uniformly valid asymptotic solution requires
higher values of kw to give an accurate result than the well-cut-on approximation
given in the previous section. Even so, the agreement seen over most of the cut-on
range in figure 10 is encouraging.

5. Response to turbulence spectrum
Now that a uniformly valid approximation for the cascade response to a single

gust has been established, we can integrate over a spectrum of gusts to obtain the
response to a full turbulence field. We will use a modification of the analysis of
Hanson & Horan (1998), who consider a flat-plate cascade. One important new
feature here stems from the fact that the tangential component of the gust velocity,
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At, can generate noise in non-uniform flow, due to the interactions at the blade
leading edges. This will result in contributions corresponding to cross-correlations
between the normal and tangential velocity components and the auto-correlation of
the tangential velocity components, in addition to the usual auto-correlation of the
normal velocity which appears in Hanson & Horan (1998).

A well-known expression for the instantaneous acoustic intensity vector far up-
stream of the cascade, I(x, t), is given in Goldstein (1976, p. 41). The component of
this intensity in the direction n, where n is normal to the front face of the cascade
pointing upstream, is time-averaged over a large time interval T , leading to the
spatially dependent mean flux I(x), which we write in the spectral form∫ ∞

−∞
Iω(x) dω. (5.1)

Here Iω(x) is the dimensional time-averaged energy flux per unit frequency, and it is
shown by Hanson & Horan (1998) and Hanson (1997) that Iω = Iω · n, where

Iω = −2πiρ∞ω
T

G̃∗
[
∇G̃+

U∞
a2∞

(
iωG̃−U∞ ∂G̃

∂x

)]
, (5.2)

and G̃(x, ω) is the time Fourier transform of the unsteady velocity potential G′(x, t).
In order to compute our results in a physically meaningful way, it proves convenient

to suppose that the stator row is composed of a repeating pattern of V vanes,
corresponding to the unsteady flow being periodic round an annulus at fixed radius.
This means that the inter-blade phase angle σ must satisfy σ = 2πl/V for any integer
l. Following Hanson & Horan (1998) the sound power spectrum associated with these
V blades is then found by integrating Iω over a distance V∆∗ in the direction along
the front face of the cascade and over a distance b∗∂R in the spanwise direction. Here
we assume that the turbulence–cascade interaction occurs over a finite radial distance
b∗∂R that is large compared with the wavelengths which dominate the acoustic field.
We thus find that the dimensional sound power spectrum is

Π(ω) =

∫ V∆∗

0

∫
b∂R

Iω dz∗ dτ, (5.3)

where τ is the coordinate along the front face of the cascade.
The response to a single-frequency gust presented in the previous section can now

be substituted into equation (5.3). Considerable simplification of equation (5.3) is
possible, and full details are given in Hanson & Horan (1998) and Hanson (1997).
The key feature of the Hanson & Horan (1998) result is the way it allows the
inhomogeneous wake turbulence produced by an upstream rotor to be treated using
results for homogeneous turbulence. This is achieved by first assuming that the
rotor wakes do not decay significantly over the rotor–stator gap, and then the two
integrations in (5.3) remove the spatial variations in the other two directions, so that
a spectrum for homogeneous turbulence can be used in (5.3). Hanson & Horan’s
derivation does need to be extended to account for the contributions to the noise
from the gust tangential-velocity components mentioned above, however, but this can
be completed in a standard way and details need not be included. It turns out that

Π =
(2πεU∞)2ρ∞b3∗β∞∂R

s∆k

×
∞∑

n=−∞

∑
l

∫
k3

|F(θns )|2
sin(θns − α){ϕ22|EN |2 + 2 Re(ϕ21E

∗
NEt) + ϕ11|Et|2} dk3, (5.4)
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where ϕij are the averaged turbulence wavenumber spectra, which are taken to be
the idealized Liepmann model for isotropic flow (normalized by ε2U2∞b3∗), giving

ϕij =
2v̄Λ5(δij |κ|2 − κiκj)
π2(1 + Λ2|κ|2)3

(5.5)

in tensor notation. Here, b∗Λ is the turbulence integral scale, ε2U2∞v̄2 is the upwash
intensity and

κ =

(
k,

2lπb∗
Vs∗

− k cot α∗, kk3

)
(5.6)

is the wavenumber vector of the incident gust with respect to the axes x∗, y∗ and z∗
of the physical coordinate system, normalized by 1/b∗. The second component of κ
has been denoted by kkn in § 3, and is now fixed by imposing periodicity around the
annulus. Specifically, kn is fixed in terms of the index l according to (3.12).

It was shown in § 3.2 that for any given kn and k3 (with k fixed), there is a
finite number of cut-on modes with indices in the range nr 6 n 6 nq that satisfy
|2nπ − σ′| 6 ∆kw. Conversely, for any given mode index n, there is a (non-empty)
range of values of kn (or equivalently of l) and k3, such that this mode is cut-on.
Accordingly, for every integer n, the integration and the inner summation in (5.4) are
performed over only those values of k3 and l for which the mode is cut-on. All values
of n give non-zero contributions to (5.4) (the combination l = nV , k3 = 0 is always
cut-on in subsonic flow, for example), but these decay like |n|−4 as n→ ±∞ with the
wavenumber spectra ϕij of the incident field, so that the outer summation in (5.4)
converges.

There are two significant differences between (5.4) and the corresponding result in
Hanson & Horan (1998). First, because we now take into account the distortion of
the turbulence field by the mean flow and the additional sound generation due to
volume sources near the leading edge, the streamwise component of the incident field
now contributes to the turbulence–cascade interaction. This has resulted in the two
additional terms inside the braces in (5.4) that involve Et and the wavenumber spectra
ϕ21 and ϕ11 (the function in braces is still positive definite). These are O(k1/2δ) and
O(kδ2) smaller than the first term in the high-frequency, small-disturbance limits, as
confirmed by comparing (3.20), (3.10) and (3.8). The other difference is in the acoustic
response to the cross-stream component of the incident velocity, i.e. the term involving
ϕ22, since the interaction between the gust normal velocity and the non-uniform mean
flow generates noise in addition to that produced by the momentum-blocking of
the airfoil surface. The coefficient of this term, |F(θns )EN |2, is consequently different
from that given by Hanson & Horan (1998). Equations (3.20), (3.24) and (4.5) show
that the phase terms kδp3(θ

n
s ) and kδp2 of the reflected and bouncing modes lead

to interference effects that are O(1) in the preferred limit kδ = O(1). These are
attributed to the non-uniform mean flow and make F(θns ), EN and Et significantly
different from their flat-plate, zero-incidence counterparts. However, we do note that
the gust drift kδgl and the phase distortion of the direct acoustic field kδp1 cancel
out in (5.4), essentially because of taking the time-average, confirming our statement
in § 2 that only the strength of the leading-edge flow is required from the steady-flow
calculations. Of course, although the turbulence far upstream of the stator has been
represented as being homogeneous once the averaging in (5.3) has been completed,
the non-uniform steady flow round the cascade distorts this turbulence as it convects
downstream, modifying the noise through the presence of the drift phase factor kδgl .
It is interesting that this distortion does not affect our time-averaged measures of the
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Figure 11. Noise spectrum for a cascade of uncambered airfoils at zero angle of attack,
with thicknesses t = 0, 6, 12% of chord. Here M∞ = 0.5.

noise, but this is no doubt a consequence of the asymptotic limit δ � 1, leading to
only weakly non-uniform mean flow. For more strongly non-uniform mean flow, for
instance produced by blades with O(1) camber, the distortion of the turbulence would
lead to a more significant effect than the simple phase distortion found here, which
could in turn then feature in our time-averaged measures of the noise.

We present results in decibels using the definition

LP = 10 log10

(
2Π

10−12 W

)
(5.7)

for the power level LP , with realistic values V = 25, b∗ = 0.2 m, α∗ = 60◦, ∆∗ = 1.6b∗,
turbulence intensity v̄2 = 0.0001U2∞, and turbulence integral lengthscale Λ = 0.5b∗.
For this choice of integral lengthscale it should be noted that part of the turbulent
energy is in the low to moderate frequency range, where our asymptotics lose validity.
However, it could be expected that the effects of the blade geometry are less important
at low frequency.

In figure 11 we consider NACA 00XX blades at zero angle of attack with varying
thicknesses at M∞ = 0.5, and we find that an increase in thickness is seen to increase
the spectrum level, particularly for the highest frequencies, by 2–3 dB. A similar
comparison at M∞ = 0.3 between a cascade of flat plates at zero incidence and a
cascade of NACA airfoils with 5% camber, 6% thickness and 5◦ angle of attack is
made in figure 12. Here, the difference is of the order of only 1 dB. It should be noted
that in dimensionless terms the lowest frequencies shown in figures 11 and 12 are
k ≈ 1.23 and k ≈ 1.48 respectively. This means that the lowest frequencies shown in
the figures are perhaps at too low a value of k for our asymptotics to be accurate
there. However, for these lower frequencies one would expect there to be rather little
effect from the non-uniform flow anyway, so that the real question of interest is the
effect of the non-uniform flow on the parts of the incident spectrum at the higher
frequencies shown in these figures.

The effects of blade geometry on broadband noise are seen here to be lower than
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Figure 12. Noise spectrum for a cascade of NACA 5506 airfoils at 5◦ angle of attack compared
with that for a cascade of flat-plate blades at zero angle of attack. M∞ = 0.3.

might have been expected in the light of the results presented in § 3 for single gusts.
Our hypothesis is that the reason for this lies in the fact that the broadband radiation
spectrum is given, as in equation (5.4), as an integral over spanwise wavenumber k3

(specifically over the range of values of k3 for which at least one mode is cut on
upstream of the cascade). This is in contrast to the single-gust results, which are
all for a single value of k3. We have already emphasized the idea that for large k
the non-uniform flow has the effect of inducing O(1) phase changes on the various
components of the noise. For example, we pointed out at the end of § 3 that the
interference between a given leading edge and its image source in the adjacent blade
is modified by the O(1) phase correction kδp3, and depending on the precise value
of p3 this phase change either leads to interference which is more constructive than
the case δ = 0 (in which case the noise increases compared to the δ = 0 case), or
the phase change leads to interference which is more destructive (in which case the
noise decreases). Now the quantity p3 depends on the spanwise wavenumber k3 quite
strongly; p3 depends on the mode angle θns (equation (3.16)), which itself depends
on w (equation (3.18)) and in turn on k3 (equation (3.4)). Our idea is that as k3

varies through the integration range in equation (5.4), p3 will also vary, and that the
contributions to the integral in which the value of p3 tends to increase the sound
above the δ = 0 level will tend to, at least partially, cancel contributions for which
the value of p3 tends to reduce the sound below the δ = 0 level. Of course, for a
single gust, with a single value of k3, this cancellation cannot occur. This may then
explain why the very largest changes to the single-gust results when non-uniform flow
is introduced, as observed for some parameter values in § 3, are not seen here for
broadband noise.

One final point to note is that experimental and theoretical studies of turbulence
interacting with isolated airfoils (Paterson & Amiet 1976, 1977) also show that the
angle of attack has only a relatively small effect on broadband noise levels. The
explanation given in Paterson & Amiet (1976) is that, at least for incompressible flow
(and therefore at low frequency), it is the component of the gust normal to the blade
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chord which generates the unsteady response. This means that at zero incidence it is
only the gust velocity normal to the upstream flow which produces unsteady lift. But,
at non-zero incidence the gust velocity parallel to the upstream flow has a non-zero
component normal to the blade chord, which provides an additional unsteady lift
proportional to angle of attack, and which is therefore small (see Horlock 1969).
This is in fact included, at high frequency, within our current analysis, via the terms
involving Et in equation (5.4). Paterson & Amiet’s argument could be applied to a
cascade as well, but only at low frequency where the distortion effects of the non-
uniform flow would be small. At the higher frequencies, we have already seen in § 3
that the single-gust response changes very markedly with changing the properties of
the non-uniform steady flow. We then suggest that the suppression of the non-uniform
flow effects on higher-frequency broadband noise in a cascade could be due instead
to the sort of interference effects described in the previous paragraph.

6. Concluding remarks
In this paper we have presented an asymptotic scheme to predict cascade noise with

non-uniform flow, by extending earlier results for gust–cascade interaction (Peake &
Kerschen 1997) to include the effects of camber and thickness. A novel method of
calculating the steady cascade flow has resulted in a closed-form expression for the
leading-edge singularity, which is easily included in the unsteady problem. Indeed, we
emphasize that the coefficient of this singularity is the only quantity from the steady
flow which needs to be calculated in order to predict time-averaged noise levels in
our model. Formulae that are valid near modal cut-off have been derived using the
results of Peake & Kerschen (1995). This gust response is then fed into a modification
of the Hanson & Horan (1998) scheme for turbulence–cascade interaction.

When only single harmonic gusts are considered, the noise produced by blades
with non-zero thickness and angle of attack can be very different (by up to 10 dB)
from the corresponding flat-plate results. This can be attributed primarily to the
O(kδ) phase distortions induced by non-uniformities in the mean flow. To a lesser
extent, additional terms in the amplitudes of the leading-edge ray fields that result
from the large mean-flow gradients (i.e. volume source terms and terms that result
from steady–unsteady flow interactions) also affect the upstream acoustic response.
This all means that the blade geometry is likely to have a significant effect on the
tonal components of rotor–stator interaction noise. However, these effects average
out somewhat when the gust responses are integrated over the full incident turbulence
spectrum. Even so, changes of the order of 2 dB can be observed in the broadband
acoustic spectrum when blade geometry is included, which is certainly significant in
a practical context.
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